

ADVANCED GCE MATHEMATICS Further Pure Mathematics 3

4727

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Thursday 29 January 2009 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 In this question *G* is a group of order *n*, where $3 \le n < 8$.
 - (i) In each case, write down the smallest possible value of *n*:
 - (a) if G is cyclic, [1]
 - (b) if G has a proper subgroup of order 3, [1]
 - (c) if G has at least two elements of order 2. [1]
 - (ii) Another group has the same order as G, but is not isomorphic to G. Write down the possible value(s) of n. [2]

2 (i) Express
$$\frac{\sqrt{3} + i}{\sqrt{3} - i}$$
 in the form $re^{i\theta}$, where $r > 0$ and $0 \le \theta < 2\pi$. [3]

(ii) Hence find the smallest positive value of *n* for which $\left(\frac{\sqrt{3} + i}{\sqrt{3} - i}\right)^n$ is real and positive. [2]

3 Two skew lines have equations

$$\frac{x}{2} = \frac{y+3}{1} = \frac{z-6}{3}$$
 and $\frac{x-5}{3} = \frac{y+1}{1} = \frac{z-7}{5}$

- (i) Find the direction of the common perpendicular to the lines. [2](ii) Find the shortest distance between the lines. [4]
- 4 Find the general solution of the differential equation

$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 5y = 65\sin 2x.$$
 [9]

5 The variables x and y are related by the differential equation

$$x^3 \frac{\mathrm{d}y}{\mathrm{d}x} = xy + x + 1. \tag{A}$$

(i) Use the substitution $y = u - \frac{1}{x}$, where *u* is a function of *x*, to show that the differential equation may be written as

$$x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u.$$
 [4]

(ii) Hence find the general solution of the differential equation (A), giving your answer in the form y = f(x). [5]

3

The cuboid *OABCDEFG* shown in the diagram has $\overrightarrow{OA} = 4\mathbf{i}$, $\overrightarrow{OC} = 2\mathbf{j}$, $\overrightarrow{OD} = 3\mathbf{k}$, and *M* is the mid-point of *GF*.

- (i) Find the equation of the plane ACGE, giving your answer in the form $\mathbf{r.n} = p$. [4]
- (ii) The plane *OEFC* has equation $\mathbf{r} \cdot (3\mathbf{i} 4\mathbf{k}) = 0$. Find the acute angle between the planes *OEFC* and *ACGE*. [4]
- (iii) The line AM meets the plane OEFC at the point W. Find the ratio AW : WM. [5]
- 7 (i) The operation * is defined by x * y = x + y a, where x and y are real numbers and a is a real constant.
 - (a) Prove that the set of real numbers, together with the operation *, forms a group. [6]
 - (b) State, with a reason, whether the group is commutative. [1]
 - (c) Prove that there are no elements of order 2. [2]
 - (ii) The operation \circ is defined by $x \circ y = x + y 5$, where x and y are **positive** real numbers. By giving a numerical example in each case, show that two of the basic group properties are not necessarily satisfied. [4]
- 8 (i) By expressing $\sin \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, show that

$$\sin^6 \theta \equiv -\frac{1}{32} (\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10).$$
 [5]

(ii) Replace θ by $(\frac{1}{2}\pi - \theta)$ in the identity in part (i) to obtain a similar identity for $\cos^6 \theta$. [3]

(iii) Hence find the exact value of
$$\int_{0}^{\frac{1}{4}\pi} (\sin^{6}\theta - \cos^{6}\theta) d\theta.$$
 [4]

4727 Further Pure Mathematics 3

1 (i) (a)	(n =) 3	B1	1	For correct <i>n</i>
(b)	(n =) 6	B1	1	For correct <i>n</i>
(c)	(n =) 4	B1	1	For correct <i>n</i>
(ii)	(n =) 4, 6	B1		For either 4 or 6
		B1	2	For both 4 and 6 and no extras
				Ignore all <i>n</i> 8
				SR B0 B0 if more than 3 values given, even if they include 4 or 6
		5	5	
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1		For multiplying top and bottom by complex conjugate
	$OR \ \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$			<i>OR</i> for changing top and bottom to polar form
	$=(1)e^{\frac{1}{3}\pi i}$	A1		For $(r =) 1$ (may be implied)
		A1	3	For $(\theta =) \frac{1}{3}\pi$
				SR Award maximum A1 A0 if $e^{i\theta}$ form is not seen
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n =) 6$	M1		For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$, $\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied)
		A1	2	For $(n =) 6$ SR For $(n =) 3$ only, award M1 A0
		5	5	
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1		For using direction vectors and attempt to find vector product
	=[2, -1, -1]	A1	2	For correct direction (allow multiples)
(ii)	$d = \frac{[5, 2, 1] \cdot [2, -1, -1]}{[5, 2, 1] \cdot [2, -1, -1]}$	B1		For $(AB =) [5, 2, 1]$ or any vector joining lines
	$a = \sqrt{6}$	M1		For attempt at evaluating AB . n
		M1		For $ \mathbf{n} $ in denominator
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1	4	For correct distance
		6	0	

4	$m^{2} + 4m + 5 (= 0) \Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1	For attempt to solve correct auxiliary equation
	$= -2 \pm i^{2}$	A1	For correct roots
	$CF = e^{-2x} (C\cos x + D\sin x)$	A1√	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}
	$PI = p \sin 2x + q \cos 2x$	B1	For stating a trial PI of the correct form
	$y' = 2p\cos 2x - 2q\sin 2x$ $y'' = -4p\sin 2x - 4q\cos 2x$	M1	For differentiating PI twice and substituting into the DE
	$\cos 2x (-4q + 8p + 5q) + \sin 2x (-4p - 8q + 5p) = 65 \sin 2x$	A1	For correct equation
	$ \left.\begin{array}{l} 8p+q=0\\ p-8q=65 \end{array}\right\} \qquad p=1, q=-8 $	M1	For equating coefficients of $\cos 2x$ and $\sin 2x$ and attempting to solve for <i>p</i> and/or <i>q</i>
	$PI = \sin 2x - 8\cos 2x$	AI	For correct p and q Earwains $CS = CE + DL$ with 2 arbitrary constants
	$e^{-2x}(C\cos x + D\sin x) + \sin 2x - 8\cos 2x$	B1√ 9	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI
		9	
5 (i)	$y = u = \frac{1}{2} \rightarrow \frac{dy}{dy} = \frac{du}{dt} + \frac{1}{2}$	M1	For differentiating substitution
0 (1)	$y = u$ $x = dx = dx + x^2$	A1	For correct expression
	$x^{3}\left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}}\right) = x\left(u - \frac{1}{x}\right) + x + 1$	M1	For substituting <i>y</i> and $\frac{dy}{dx}$ into DE
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1 4	For obtaining correct equation AG
(ii)	METHOD 1 $\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	M1 A1	For separating variables and attempt at integration For correct integration (k not required here)
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1 M1	For any 2 of For all 3 of k seen, exponentiating, substituting for u
	$\implies y = A e^{-1/x} - \frac{1}{x}$	A1 5	For correct solution AEF in form $y = f(x)$
	METHOD 2		
	$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{1}{x^2}u = 0 \implies \text{I.F. e}^{\int -1/x^2 \mathrm{d}x} = \mathrm{e}^{1/x}$	M1	For attempt to find I.F.
	$\implies \frac{\mathrm{d}}{\mathrm{d}x} \left(u \mathrm{e}^{1/x} \right) = 0$	A1	For correct result
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1 M1	From $u \times I.F. =]$, for k seen for substituting for u } in either
	-1/r 1	A 1	
	$\Rightarrow y = k e^{-\frac{1}{x}} - \frac{1}{x}$	AI	For correct solution AEF in form $y = f(x)$
		9	

6 (i)	METHOD 1		
	Use 2 of [-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1	For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>
	$\mathbf{n} = k [1, 2, 0]$	A1	For correct n
	Use A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]	M1	For substituting a point in the plane
	$\mathbf{r} \cdot [1, 2, 0] = 4$	A1 4	For correct equation. AEF in this form
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda [-4, 2, 0] + \mu [0, 0, 3]$	M1	For writing plane in 2-parameter form
	$\implies x = 4 - 4\lambda , \ y = 2\lambda , \ z = 3\mu$	A1	For 3 correct equations
	x + 2y = 4	M1	For eliminating λ (and μ)
	\Rightarrow r .[1, 2, 0] = 4	A1	For correct equation. AEF in this form
(ii)	$\theta = \cos^{-1}$ [[3, 0, -4].[1, 2, 0]]	B1√	For using correct vectors (allow multiples). f.t.
(11)	$0 = \cos - \frac{1}{\sqrt{3^2 + 0^2 + 4^2}} \sqrt{1^2 + 2^2 + 0^2}$	M1	from n
		MI	For multiplying both moduli in denominator
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1 4	For correct angle
	(74.435°, 1.299)		
(iii)	<i>AM</i> : (r =) [4, 0, 0] + t [-2, 2, 3]	M1	For obtaining parametric expression for AM
	(or [2, 2, 3] + t[-2, 2, 3])	A1	For correct expression seen or implied
	3(4-2t) - 4(3t) = 0	M1	For finding intersection of $4M$ with $4CGF$
	$(or \ 3(2-2t)-4(3+3t)=0)$	1411	
	$t = \frac{2}{3} (or \ t = -\frac{1}{3}) OR \ \mathbf{w} = \left[\frac{8}{3}, \frac{4}{3}, 2\right]$	A1	For correct <i>t OR</i> position vector
	AW:WM = 2:1	A1 5	For correct ratio
		13	
7 (i) (a)	$x + y - a \in \mathbf{R}$	B1	For stating closure is satisfied
	(x*y)*z = (x+y-a)*z = x+y+z-2a	M1	For using 3 distinct elements bracketed both ways
	x * (y * z) = x * (y + z - a) = x + y + z - 2a	A1	For obtaining the same result twice for associativity
			SR 3 distinct elements bracketed once,
			expanded, and symmetry noted scores M1 A1
	$x + e - a = x \implies e = a$	B1	For stating identity = a
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	Ml	For attempting to obtain inverse of x For obtaining inverse $= 2a - x$
			OR for showing that inverses exist.
			where $x + x^{-1} = 2a$
	$x + y - a = y + x - a \Rightarrow$ commutative	B1 1	For stating commutativity is satisfied, with
(b)		M1	justification
(c)	x order $2 \Rightarrow x^*x = e \Rightarrow 2x - a = e$		Por obtaining equation for an element of order 2
	$\Rightarrow 2x - a = a \Rightarrow x = a = e$	A1 2	For solving and showing that the only solution
	$OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$		is the identity (which has order 1)
	\Rightarrow no elements of order 2		<i>OR</i> For proving that there are no self-inverse
			elements (other than the identity)

January 2009

(ii)	e.g. $2+1-5=-2 \notin \mathbb{R}^+$	M1	For attempting to disprove closure
	\Rightarrow not closed	A1	For stating closure is not necessarily satisfied $(0 < x + y)$, 5 required)
	e.g. $2 \times 5 - 11 = -1 \notin \mathbb{R}^+$	M1	For attempting to find an element with no inverse
	\Rightarrow no inverse	A1 4	For stating inverse is not necessarily satisfied $(x \dots 10 \text{ required})$
		13	
8 (i)	$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1	z may be used for $e^{i\theta}$ throughout For expression for $\sin\theta$ seen or implied
		M1	For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^6$
	$\sin^6 \theta =$		At least 4 terms and 3 binomial coefficients required.
	$-\frac{1}{64} \Big(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \Big) \Big] = -\frac{1}{64} \Big(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \Big) \Big]$	$i\theta + e^{-6i\theta}$	For correct expansion. Allow $\frac{\pm(i)}{64}(\dots)$
	$= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$	Al Ml	For grouping terms and using multiple angles
	$\sin^6 \theta = -\frac{1}{32} \left(\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10 \right)$	A1 5	For answer obtained correctly AG
(ii)	$\cos^6 \theta = OR \sin^6 \left(\frac{1}{2}\pi - \theta\right) =$	M1	For substituting $\left(\frac{1}{2}\pi - \theta\right)$ for θ throughout
	$-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-6\theta))$	$(2\theta) - 10)$	
	52 *	A1	For correct unsimplified expression
	$\cos^{6}\theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right)$	A1 3	For correct expression with $\cos n\theta$ terms AEF
(iii)	$\int_0^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta\right) d\theta$	В1√	For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$
	$=-\frac{1}{4}\left[\frac{1}{4}\sin 6\theta+\frac{15}{4}\sin 2\theta\right]^{\frac{1}{4}\pi}$	M1	For integrating $\cos n\theta$, $\sin n\theta$ or $e^{in\theta}$
		A1	For correct integration. f.t. from integrand
	$=-\frac{11}{24}$	A1 4	For correct answer WWW
		12	